Replacement of posterior by anterior endoderm reduces sterility in embryos from inverted eggs of Xenopus laevis.
نویسنده
چکیده
The genital ridges of Xenopus laevis tadpoles reared from eggs kept in an inverted position contain less than 40% of the number of primordial germ cells (PGCs) of controls (Cleine & Dixon, 1985). It has been suggested that this reduction is caused by the germ cells' ectopic position in the anterior endoderm of larvae from inverted eggs, from where they may be unable to migrate into the genital ridges (Cleine & Dixon, 1985). This hypothesis is tested here by interchanging anterior and posterior endodermal grafts between pairs of inverted embryos at the early tailbud stage. Replacement of anterior by posterior endoderm has no effect but replacement of posterior by anterior endoderm increases the number of PGCs in the genital ridges and significantly reduces the proportion of sterile embryos. In a control series, in which the same type of grafting was done with normal embryos, replacement of posterior by anterior endoderm reduced the number of germ cells to almost zero, but replacement of anterior by posterior endoderm nearly doubled it. These findings are explained in terms of the distribution of the germ cells in the endoderm at the time of grafting. The results firstly show that the position of the germ cells is crucial to successful migration and secondly they support the notion that germ plasm has a determinative role during early germ cell differentiation.
منابع مشابه
Expression of hsp90 Alpha and hsp90 Beta during Xenopus laevis Embryonic Development
Background: Members of the eukaryotic Hsp90 family function as important molecular chaperones in the assembly, folding and activation of cellular signaling in development. Two hsp90 genes, hsp90 alpha and hsp90 beta, have been identified in fish and homeothermic vertebrates but not in poikilothermic vertebrates. In the present study, the expression of hsp90 alpha and hsp90 beta genes in Xenopus...
متن کاملThe restriction of the heart morphogenetic field in Xenopus laevis.
We have examined the spatial restriction of heart-forming potency in Xenopus laevis embryos, using an assay system in which explants or explant recombinates are cultured in hanging drops and scored for the formation of a beating heart. At the end of neurulation at stage 20, the heart morphogenetic field, i.e., the area that is capable of heart formation when cultured in isolation, includes ante...
متن کاملThe effect of egg rotation on the differentiation of primordial germ cells in Xenopus laevis.
Eggs of X. laevis were rotated (sperm entrance point downwards) either through 90 degrees (1 X 90 embryos) or 180 degrees in two 90 degrees steps (2 X 90 embryos) at approximately 25-30 min postfertilization after cooling to 13 degrees C. The embryos were kept in their off-axis orientation and cooled until the early gastrula stage. Rotation resulted in relocation of egg constituents with slight...
متن کاملTwin Xenopus laevis embryos appearing from flattened eggs
Remarkable progress has recently been made in molecular biology of double axis formation in Xenopus laevis. Leaving aside, for the time being, the problem of the gene expressions regulating Xenopus laevis development, here I show that pulse treatment could induce formation of a secondary axis in a fertilized Xenopus laevis egg. At 3 min after insemination, metal oxides were added to Xenopus fer...
متن کاملThe specification of heart mesoderm occurs during gastrulation in Xenopus laevis.
The establishment of heart mesoderm during Xenopus development has been examined using an assay for heart differentiation in explants and explant combinations in culture. Previous studies using urodele embryos have shown that the heart mesoderm is induced by the prospective pharyngeal endoderm during neurula and postneurula stages. In this study, we find that the specification of heart mesoderm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of embryology and experimental morphology
دوره 94 شماره
صفحات -
تاریخ انتشار 1986